Reg. No. : \square
Question Paper Code : 80603
B.E./B.Tech. DEGREE EXAMINATION, ṄOVEMBER/DECEMBER 2016.

First Semester
Mẹchanical Engineering
MA 6151 - MATHEMATICS - I

(Common to all branches except Marine Engineering)
(Regulations 2013)
Maximum : 100 marks
Time : Three hours

Answer ALL questions.

$$
\text { PART A - }(10 \times 2=20 \text { marks })
$$

1. If the sum of two eigenvalues and trace of a matrix A are equal, find the value of $|A|$.
2. Write down the matrix corresponding to the quadratic form

$$
2 x_{1}^{2}+5 x_{2}^{2}+4 x_{1} x_{2}+2 x_{3} x_{1}
$$

3. Define convergence series with example.
4. Find the coefficient of x^{6} in the expansion of $\left(1-x+x^{2}\right) e^{2 x}$.
5. Find the radius of curvature of the curve $x y=c^{2}$ at (c, c).
6. Find the envelope of the family of straight lines $y=m x+\frac{a}{m}, m$ being the parameter.
7. Find $\frac{d u}{d t}$ when $u=x^{2}+y^{2}, x=a t^{2}, y=2 a t$.
8. If $x=r \cos \theta, y=r \sin \theta$, find $\frac{\partial(r, \theta)}{\partial(x, y)}$
9. Evaluate $\iint_{0}^{1} \int_{0}^{3} x y z d x d y d z$.
10. Change the order of integration in $\int_{0}^{1} \int_{0}^{y} f(x, y) d x d y$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the eigenvalues and eigenvectors of the matrix $\left(\begin{array}{ccc}11 & -4 & -7 \\ 7 & -2 & -5 \\ 10 & -4 & -6\end{array}\right)$.
(ii) Using Cayley-Hamilton theorem find A^{-1}, where $A=\left(\begin{array}{ccc}7 & 2 & -2 \\ -6 & -1 & 2 \\ 6 & 2 & -1\end{array}\right)$.
Or
(b) Reduce the quadratic form $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{1}$ to canonical form.
12. (a) (i) Examine the convergence of the series $\frac{1}{2!}-\frac{2}{3!}+\frac{3}{4!} \cdots \infty$.
(1i) Find the sum to infinity of the series $\frac{1}{1!}+\frac{\text { 解 } 5}{2!}+\frac{1+545^{2}}{3!}+\cdots \infty$.
Or
(b) (i) Expand $\frac{1}{(1-2 x)^{2}(1-3 x)}$ in ascending powers of x. Also find the coefficient of x^{n}.
(ii) Prove that $\sqrt{x^{2}+4}-\sqrt{x^{2}+1}=1-\frac{x^{2}}{4}+\frac{7}{64} x^{4}$ nearly when x is small.
13. (a) (i) Find the equation of the circle of curvature of the parabola $y^{2}=12 x$ at $(3,6)$.
(ii) Find the equation of evolute of the curve $x=a(\cos t+t \sin t), y=a(\sin t-t \cos t)$.

Or
(b) (i) Find the radius of curvature at $(a, 0)$ on the curve $x y^{2}=a^{3}-x^{3}$.
(ii) Find the envelope of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are connected by the relation $a^{2}+b^{2}=c^{2}, c$ being a constant.
14. (a) (i) If $u=f(r, s, t)$ and $r=\frac{x}{y}, s=\frac{y}{z}, t=\frac{z}{x}$, find the value of

$$
\begin{equation*}
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z} \tag{8}
\end{equation*}
$$

(ii) Examine the extrema of $f(x, y)=x^{2}+x y+y^{2}+\frac{1}{x}+\frac{1}{y}$.

Or

(b) (i) Using Taylor's series expansion; expand $e^{x} \sin y$ in powers of x and y as far as terms of the $3^{\text {rd }}$ degree.
(ii) Find the shortest and longest distances from the point $(1,2,-1)$ to the sphere $x^{2}+y^{2}+z^{2}=24$.
15. (a) (i) Evaluate $\int_{0}^{a \sqrt{a^{2}-x^{x^{3}}}} \sqrt{0^{2}-x^{2}-y^{2}} d x d y$.
(ii) Using double integral find the area of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Or
(b) (i) Change the order of integration in $\int_{0}^{2} \int_{0}^{\sqrt{4-y^{2}}} x y d x d y$ and evaluate it. (8)
(ii) By transforming into polar co-ordinates evaluate $\int_{0}^{\infty} \int_{0}^{-\left(x^{2}+y^{2}\right)} d x d y$. Hence find the value of $\int_{0}^{\infty} e^{-x^{2}} d x$.

